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PROGRAMMED CONSTRUCTIONS IN CONTROL PROBLEMS WITH VECTOR CRITERION* 

A.M. TARAS'YEV 

The control problem with a vector criterion is considered. The system 
is noisy and feedback control is used. The motion of a vector optimal 
guaranteed result (OGR) is introduced. With a scalar criterion, the 
problem reduces to the traditional problem of optimal guaranteed 
control, which can be solved by methods of differential game theory 
/l-4/. An important part of this theory is the extremal aiming method, 
which, subject to regularity conditions /l-6/, reduces the construction 
of a positional strategy to solving auxiliary programmed control 
problems. It is shown that programmed absorption constructions may be 
applied to control problems with a vector criterion. 

We define the optimal guranteed result (OGR) vector multivalued function (OGR VMF) 
which is an analogue of the OGR function in the control problem with a scalar criterion. 
Some properties of this function are stated. In particular, we consider the scalarixation of 
OGR VMF. The infinitesimal form /7-lO/ of the u-stability property of the OGR VMF is given. 
Differential inequalities expressing the u-stability property in vector form are used to 
analyse programmed constructions in the linear control problem with a convex vector 
criterion. We define the programmed maximin VMF (PM VMF) in this problem and give the 
regularity conditions when PM VMF and OGR VMF are equal. These regularity conditions 
essentially ensure the property of u-stability of PM VMF and are obtained from the 
corresponding infinitesimal inequalities. The regularity conditions in their final form do 
not contain elements of infinitesimal construction (directional derivative of PM VMF); they 
only include the main elements of the problem, such as the vector functional and the 
Hamiltonian of the controlled system. An example demonstrating the efficiency of these 
conditions is examined. 

1. Vector optima1 guaranteed result. Consider a controlled system whose dynamics are 
described by the equation 

5’ = j (t, 5, u, u), t E [t,, 61 = T, x E R”, u E P c RP, (1.1) 
UEQCR~ 

j: TxR”xPxQ+R” 

Here x is the n-dimensional phase vector, u is the p-dimensional control vector from the 
compact set P and v is the q-dimensional noise vector, with values in the compact set Q. 

We assume that the function f is continuous in all the variables, satisfies the Lipschits 
condition on X, and allows continuation of the solutions. 

A vector performance functional is defined on the trajectories x (*) of system (1.1): 

J (r (.)) = e (2 (fi)) = (cl (2 (a)), . . . . orn (5 NY)) (1 .a 
Here ui: R”+ R’ are continuous functions. 

We assume that the control u is generated positionally /3/. The goal is to "minimize" 
the functional (1.2) in the sense defined below. 

We define an order relation on m-dimensional vectors. For a = (al, . . ., a,), b = (A,, . . ., 

Am) we take 

a < A, if ai < bi, for all i, 

,a< b, if a, > b, for some j. 

Here and below, i,j = 1, . . ..m. 

We will now define the vector guaranteed result. Let U: T x R” -+ P be a positional 

strategy, X (t*,r,, u) the bundle of trajectories generated by thestrategy ll from the 
initial position (t,,z,)ET X R". 
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Let 

z (t*, 5*, U) = {s E R”‘: s = (I (5 @)), 5 (*) E x tt*, z*, U)) 
&KlY v*, 52, U) = (So E R?s<< for allsE Z (&, 5*, v)) 

&*x(t*, r*) = u &nax(t*r r*. U) 
" 

z maz = {(t, z, s) E T x R" x R": s E %I,, (& 5)) 
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(1.3) 

Thus, &tax (t*, I*, U) is the set of vector results guaranteed by the strategy U at the 
point (t*, 5J by all the components simultaneously; Z,,, (t,,s,) is the set of all 
guaranteed results in position (t*, r*). 

Definition 1. An optimal guaranteed result (OGR) at the point (t,,x,) is the set 

c (t*, z*) of Pareto-minimal points from the set of guaranteed results Zmax(t*,z*), i.e., 

c (t*, z*) = {.@ E ZIKIX ct*. I*): s 9; .@ 

for all s E Em,, (t*, q) \ (81) 
(1.4) 

Thus, by definition, for the guaranteed vector so E c (t*, x,), (t*, z*) E T X R", there 
exists a positional strategy U: T XR"+-P such that a(~@))<< for all 
U) and So is Pareto-"best" among all vectors with this property. 

5 (.) E x @*. rtt 

Note that Definition 1 is similar to the definition of the optimal guaranteed value in 
/ll/, where the multicriterion guaranteed control problem was analysed in the framework of 
Pontryagin's first direct method. 

The optimal guaranteed result vector multivalued function (OGR VMF) of ,problem (l.l), 
(1.2) is the multivalued mapping (t, x)--t c (t, 2): T x R" + 2R'". 

2. Properties of OCR VW. To investigate the properties of the OGR VMF, we will use the 
auxiliary system 

z' = f (t, 5, u, u), t E T, z E RR, u E P, u E Q (2.1) 
Si' = 0 

Consider the following problem of guiding the motion to the goal set M, which is the 
epigraph of the vector function U, 

in time 0. 

M = {(z,s) fz R" x R'": u (5) < s} (2.2) 

For the position (t,,x,,s,)E T X H" X R"' 
U,: T x R" x R"'+P 

we need to determine the positional strateqy 
which guides the motion of the system (2.1) to the goal set M in a 

time 6 regardless of noise. 
Let W,cTxRnxRm be the positional absorption set in problem (2.1), (2.2), i.e., 

the set of initial positions (t,,z,,s,) for which the problem of guiding the motions of 
system (2.1) to the goal M is solvable. 

An important property of the OGR VMF (t,s)+c(t,z) is expressed by the following theorem. 

Theorem 1. The epigraph of the OGR VMF (the set Z,,, (1.3)) is identical with the 
positional absorption set W, of the augmented problem (2.11, (2.2). 

The proof of Theorem 1 is based on the alternative theorem /3/* . 

Remark 1. It follows from Theorem 1 that the OGR VMF (t,z)-c(t,q may be constructed 
using algorithms and programs designed to solve guaranteed control problems of the form (2.11, 
(2.2). Such algorithms and programs are being developed, e.g., 
Systems, Institute of Mathematics and Mechanics, 

at the Department of Dynamic 
Ural Division of the Academy of Sciences of 

the USSR /12/. 
Let us state some properties of the OGR VMF. The proof is simple and therefore omitted. 

Property 1. Let 0‘: T x R"+ R' be the OGR function in the control problem for 
system (1.1) with the scalar criterion 

J (I (.)) = c1 (5 (6)) (2.3) 

I_.=., 

q(t,s)= min nlax q(z(ft)),(t,z)E T x R" 
ri I(.)EXu*x. c‘) 

*Complete proofs of this and other propositions are given in Taras'yev A.Y., Differential 
Games with Vector Criterion, Sverdlovsk, 
V89. 

1989. Unpublished manuscript, VINITI 11.07.89, 4608- 
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For any position (t,,z,)E T X R" and any vector s E c(t,,s,) we have the vector in- 
equality oo(t,.+,) <s, o,(t,,+,) = (oI(t*.Q,... . urn lb, 4). 

Property 2. For any position (t,,x,)E T X R" and index i, there exist numbers sj", jfi, 
such that the vector so = (sIo, . ., si_I, oi (t*, z*), si+,, . . ., s,,,‘) is the OGR, i.e., so E c (t*, 5*). 

Property 3. For all positions (t,,.r,)E T X R" the set c(t,, z*) is bounded. 

Property 4. The epigraph of the OGR VMF (t,s)+c(t,r) - the set W, - is a closed set. 

3. Scdarization of the vector criterion. Consider the scalarization of the vector 
criterion. We will use the scalarization technique of /13/. Assume that the OGR VMF has been 
constructed. Let 

(t*, 2.) E T x R", so = (slo, . . ., sm") E c (t*, z*), sin > 0 

a; = (s(J)-l (,i& (sjo)-‘)-l 

We denote by u": TX R"+P the optimal strategy in problem (l.l), (1.2), i.e.,U(z@))< 
8 for all 5 (.) E X (t*, X*, u"). 

Assume that a scalarized payoff functional is defined for system (1.1) as a scalarization 
of the vector functional (1.2) 

J (I (.)) = max {oi% (r (@))I (3.1) 

We denote by 0': T x R"+R' the OGR function and by U*: T X R"+P the optimal strategy 
in the scalar problem (l.l), (3.1), i.e., 

W”(t,, I*) = min max max{aiOui(z(it))) = 
I‘ x(.)ES(1*,r*, L) i 
max max {aioui(r(6))) 

r(.)Ex(r*.=*. I,*) i 

(3.2) 

Theorem 2. The optimal strategy u" of vector problem (1.11, (1.2) is optimal in the 
scalar problem (l.l), (3.1), i.e., 

(8 (t*, x*) = max max(a,%~(z@))) 
X(.)ES(II;. 2*, I'D) i 

The optimal strategy U* of the scalar problem (l.l), (3.1) is optimal in the vector 
problem (l.l), (1.2), i.e., 

u(5 (8)) < so for all I (.) E X (t*, .z*, U*) 

Also 

d(t*, J*) = (,jl (q-1)-’ 7 so = (s1”* . . ., sm”) E c (t*, Z*) 

The proof of Theorem 2 is along the same lines as in /13/. 

Remark 2. Scalarization of a vector criterion is impossible without a knowledge of the 
value 6. E c (t,. I*) of the OGR VMF. Moreover, the scalarization coefficients (x,O depend 
both on the position (t,,s,)E T x Rn and on the vector value s,~C(t*.%) of the OGR VMF. 
Prior choice of the scalarization coefficients does not allow for the specific features of 
the problem, such as the dynamics of the controlled system and the structure of the vector 
performance functional. The solution of the system of scalar problems (l.l), (3.1) obtained 
by varying the scalarization coefficients al>O, aI+ + a,,,= i, is computationally costly. 

4. The u-stability property and vector differential inequalities. One of the main 
properties of the positional absorption set W,, is the u-stability property: it is the basis 
of the successive construction algorithms for the set W,; this property ensures that the 
programmed absorption set is identical with the positional absorption set, etc. The U- 
stability property can be extended to vector multivalued functions, includinq OGR VMF (t,x)-+ 

c (6 4. 
We introduce the following notation. We denote by SC the class of VMF (1, I) - 0 (t! 4 

that satisfy the following conditions: 
1) for all (t,x)~ T x R" the set o(t,z)~ Rm is bounded; 
2) the epigraph 

W = epi o = {(t, x, s) E T x Ii" X R"': ~"9 S, .@ E o (t, I)} (4.1) 
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is a closed set; 
3) for all (t, I) E T X R", S(l), SC*) E 0 (t, r) (So) + a(") we have s(l) Q s(B). 

Suppose 

F (z, I, E) = n (7, Y, 0 i-l G (r, Y) 

G (T., y) = co {f E R": f = f (r, y, u, 3, u E P, vE 0) 

n (z, y, 1) = {r E R": (1, r> > H (z, y, 1)) 

(4.2) 

(4.3) 

(4.4) 

(7, y, I) E T x R” x S, S = {r E R”: 1) r II= 1) 

Definition 2. We say that the function (t, 5) -+ 0 (t,s): T xRn-+ 2Rm, w E SC, is u- 
stable if for any positions (t*,z*)E T X R" (&<@), any vector s+ E w (t*, 5*), any moment 
t E (I,, 61 and any vector 2~ S, there exist a solution s(e) of the differential inclusion 

2' (z) fz F (7, x (z), 1) z @*) = 5*, r E It,, t1 

and a vector SE o&s(t)) such that s< s,. 
Note that Definition 2 is an expression of the u-stability property for the epigraph 

(4.1) of the function o. We see that the OGR VMF (t,z)-+c(t, X) is u-stable in the sense of 
this definition, because its epigraph W, (the positional absorption set in problem (2.11, 
(2.2)) is u-stable /3/. 

The u-stability property may be defined in different equivalent ways. The infinitesimal 
form of the u-stability property is particularly useful /7, 9, lo/. The apparatus of deriva- 
tives of multivalued mappings may also be used to obtain an equivalent definition of the U- 
stability property of VMF. Omitting the details, we give the final form of the differential 
inequalities defining the u-stability property. 

Definition 3. The function o E SC is u-stable if for any positions (t,,s,), t, E (to, 
a) = P, I* E R", any vector value s* E 0 (t*, x*) and any vector 1 Es there exists a 
vector fe F (t*, z., 1) and a vector value of the lower derivative d E&a (f,, z*, s*) I (f) of 
the function o such that d< 0. 

Here 

8-o (&,I*, s,)i(h) = {d" E Vo (t+, z*, s,J I@): d Q d” 
for all dEVo (L +, s+) IF0 \ WI 

v’o o*, z*, r,)l(h) = {d E VW (k 4 E Do (t*, G, st)) 

Do,(t,, z *,s+)= ((h,d)~ R" x (R)m: h = ji: (zk - z2)(tk- t,)-’ 

d = 22 (Sk - se) (tk - t,)-‘, tk 7 t,, tk E (t*, 61, 5k E fin, SK F= 6, (tfi. 510) 

~=RlJ{+~}lJ{---s} 

(4.5) 

(4.6) 

(4.7) 

5. ProgFtmmed kximin vector muZtivatued fun&Con. The infinitesimal form of the u- 
stability property may be used to obtain better regularity conditions for the programmed 
maximin function in linear control problems with a convex vector criterion. 

Let the system dynamics be described by the linear equation 

2’ = B (t)u + c (t)u, t E T, + E R", u, E P c RP, (5.1) 
v=QcRq 

where B 0) and C (t) are continuous ~XP and nXq matrices and P and Q are 
convex compacta. 

The payoff functional is defined by 

J (z(e)) = cp (2 (6)) = (cpl (z @)), * * *1 cpm lx W) (5.2) 

where 'pi are convex functions that satisfy the Lipschitz condition. 
The epigraph Q, = epicp = {(z, 8)~ R" x R"':cp(z),<s} is a convex set. The support func- 

tion of the epigraph of the function 'p will be called the conjugate of the vector function 
cp* It is defined by the relationship 

P (I, a) = SUP ((1, s> - (as, (4 + . . . + cc,,cp,, W7 1 E R”, a E d (5.3) 
XER" 

A = {a = (a,, . . ., a,)~ R"': a, > 0. a, -I- . . . -I a, - 1) 
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where A is an (m-I)-dimensional simplex. 
Note that the function l+p(l,a):R”-R for a fixed aEA is the conjugate of the 

function defined as the scalarization a&(z) + . . . f a,,,%~ (5) of the components 'pi. 
We introduce the notation 
2 = ((1, z, s) E T x R" x R": for any u(m) there is n (*) such that 

~(r/(s))gs,~(a)=~+~~(~).(~)~~+fC(~).(T)~~} 

Here z + u (r): [t, 61+ p, x--f V (7): it, 6]+ Q are Lebesgue-measurable functions (programmed 
controls). The set Z is called a programmed absorption set. 

From (5.3) it follows that 

2 = {(h z, s) E T x R” x R m: maxminmaxmax((l,s)-(a,s) + V(.) II(.) aE.4 &sn 

4 (l,B(z)u(T))d?+~(I.C(s)u(~))dT-p(1,a))gOj t 

Transforming the expression in braces, we obtain 

Z = {(t. &s)E T X R^ X R": min((a,s)---g(t,z,a))> 0) 
DE.4 

(5.4) 

(5.5) 

H (~~1) = nlax (1, C CT) u) + UI~I; (1, B (z) u), T E [t, 61, I E R” (5.6) CE.p 

dom p (a) = {r E I?“: p (r. a) < + 00) is a compact set in R" for all aEA by the Lipschitz 
condition for 'pi. 

The VMF (t, z) -pm (t, 5): T X R" --f 2a"', pm E SC whose epigraph is the programmed absorption 
set Z will be called programmed maximin vector multivalued function (PM VMF), i.e., 

Pm (t, .z) = (s" E 2 (t, I) : s 4 so for all s E 2 (t, I) \ {P)} 

z(t, 2) = {s E Rn': (t, I, s) E 2) 

(5.7) 

(5.8) 

6. Rdguihrity conditions for PM VMP. The programmed absorption set Z in general is not 
identical with the positional absorption set w, in problem (2.1), (2.2). We have W"EZ, 
because Z is V-stable /3/. If the set Z is moreover u-stable, then we should have the 
converse inclusion ZC W, and therefore the equality w,= 2. But then the OGR VMF 

(k x) -c (f, z) is identical with PM VMF (t,s)-+pm(t,x), if (t, z) - pm (t, 1) is u-stable. This 
case is called regular and the conditions ensuring u-stability of PM VMF are called regularity 
conditions. 

Definition 3 of u-stability of VMF includes its derivative (4.5)-(4.7). The derivative 
of PM VMF (t, x)- pm (t, z) defined by formulas (5.4)-(5.8) may be evaluated by the tools of 
non-smooth analysis /14/. We give the final expression for this derivative. 

The lower derivative of PM VMF (t,z)+ pm(t,z) at the point (t** 5*, s*), (t*, J*) E z= X 
R", s* E pm (t*, r*) with respect to the direction h=R” is defined by the relationships 

a_ pm (t*, z*, s*)l(I~) -p (C.E V Pm (t*, zt. s+)I(h): d % d" 

for all d E V pm (t*, I*, s,JI(h) \ (PI} 

Vpm(t,,~,,s,)I(h)=(d~R"': 
~a~r~*.I*,((ald)- 

,GLcrzm;~,, a) (0, IL) - H (f*, 41) 2 0) . , . 

(5.1) 

(6.2) 

Here 
A (t*, z,, se) = {a* E A : a* = argmin ((a. s,> -g (t*, 5*. a))) 

a454 

.L (t*, + s,,. a) = (l* G dam p(a) : 1, = I~~zp”(“a, ((1, se) + 

i 
H(r,l)dx--p&a))}, aEA(t,.z,,s,) 

(6.3) 

(6.4) 
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Using eoualities (6.1)-(6.4) to rewrite Definition 3, which expresses the u-stability 
property in infinitesimal form, we obtain the following regularity condition for PM VMF 

tt, 2) - pm (t, x). 

RegldZarity condition 1. PM VHF (t,+-+pm(t,z) is identical with the OOR VMF (1, s) + 
c (t, r) if and only if for any positions (t,,z*)~? T” x R", any values s,~pm(t,,z,), and 
any controls V,E Q there are a control u* EP and a vector $ER" that satisfy the 
following conditions: 

Remark 3. Relationships (6.51, (6.6) are analogous to the regularity conditions of the 
programmed maximin function in the differential game with a scalar criterion 15, 6/. 

The regularity condition for PM VHF (t,s)+ pm(t,s) may be restated in terms of con- 
jugate variables. 

~eguzar~~~ condition 2. PM VMF t&x)--+ pm (t,z) is identical with OGR VMF (t, r)+ c (8, z) 
if and only if for any positions.&, x+f E T" x Rn and any values s* EE pm(t,,z,)‘we have 

Proof. Consider the multivalued mapping t - 2 (i), where 
Z(t) = {(t, s) E R" x Rrn : (t, =, 8) E Z) 

Let (t., 5*) E To x En, S* E Pm (f*, 5*). For the derivative of a multivalued mapping t - 2 (r) 
we have at the point ft,,x.,s*) 

By the results of /91, the u-stability condition of a multivalued mapping t-Z(l) may 
be rewritten in the following form: for any positions (L,,+)E T* x Rn, any values 8. E pm (t.,2.), 
and any vector ~.EQ, we have 

DZ (t,, z*, J.) fl FR (f., I., J., v.) # 0 (6.10) 
FR (f., s*, sI, VJ = ((B (f.) u -!c C (f.) VI, 0) : u. E P, 0 E Rm) 

Since DZ (f*, t*, J*) in this case is a convex closed set and FR (f,,s,,*.,oJ is a convex 
compactum, then by the separability theorem for convex sets /15/ relationship (6.10) may be 
written in the form 

for all (t,,r,) E; To x Itn, s* E pm (#*,.z,), (&a) E ii* x A. 
Using (6.91, we obtain f15/ 

i-m, if (Z,a)~eo(ALf 

(t. d&m (f,. s+, se) (‘l’ “- (a* “)= 
SUP 

if (2, u).~ CO (AL) 

Here 

(6.12) 

(6.13) 
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the coefficients ok and the vectors lk,k=l ,..., n$mi-f, correspond to the vector (1, a) = 
RR X A in the expansion (6.13). 

Using (6.12) and (6.13), we can rewrite (6.11) in the form 

By Caratheodory's theorem /15/, we need retain in (6.14) only the sums with index varying 
from 1 to n+ 1. We thus finally obtain the regularity condition (6.7), (6.8). 

Remark 4. Relationships (6.7), (6.8) are similar in form to the regularity condition of 
the PM function in a differential game with a scalar criterion /4/. 

Remark 5. In this paper, the regularity conditions (6.5), (6.6) and (6.7), (6.8) were 
obtained using differential inequalities. However, their final form does not contain in- 
finitesimal constructions. 

7. Eszmpte. Consider a second-order linear system 

a,' = e, + V, t E (0, i], I = (s, 2%) E R8, 1 rr 14 i, 1 u 1 < t (7.9 
2%' = L1 

The vector payoff function is defined by 

e (2) = (0, (g), a* (p)), 0, (2) c= 1% I. u* (4 = I zp I (7.2) 

Note that system (7.1) with the scalar criterion max(Iall, 1~~1) was studied in /16/. 
Making the traditional change of variables z = Q, (t, e) z (0 (f, a) is the fundamental matrix 

of the homogeneous system), we obtain the system 

with the vector payoff functional 
cp (I) = (w (I)* (Px(=))f), tp1(+) T 1x1 I* ‘Pn (4 = ] I, / (7.4) 

A complete analysis of this example, including evaluating the FM VMF (t,~)-pm(t,~) in 
all positions @,,I,) E (0, 11 x Rx and checking the relationships (6.51, (6.6) or (6.7), (6.8) I 
as required by the regularity conditions, is much too complicated. We will therefore only 
consider the case t,= t (t E lo, I]), a* = 0. 

We have 

(7.5) 

L (l) = f 1 fx ( f - r) + Zp j dr 
t 

In the position ftr. z+) = (t. O), t E IO, 41, we obtain 

We can show that the maximum is reached for I,==,. Therefore 

From (5.4), (5.8) and (7.6) we obtain after some reduction 

2 (t, 0) := {S E R' : min {ql (4. qz (4 q3 (3)) > 0) 
a. f.91 2 s.,. n, Cd = S, - (< - $1 - Y (fi 

(7.7) 
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a - 2h (I) + 2 (r, - sp -; 
v1.w -= (__ 1 -I- B (I))‘/‘, if v 0) -s s,- sp -p (I) 

if v(~)>s~-s~ or E~-s~>~(~) 
h (L) = i + 11% (1 -t), Y (t)= --'!, (1 - f)2, p (Q = (1 - 1) - '1, (f - t)' 

From (7.7) we see that PM VMF (',z)+pm(t,z) at the point (t,,.z,)= (t, 0), t 1[0, i], is the 

set consisting of a piece of the parabola 

Pm (t, 0) = 1s E R* : s1 - ?, tar - (i - t))* - (1 - t) + I!) (i _ t)* = 0, 
O<S,<l-tt) 

Let us check the regularity conditions (6.7), (6.8) in the positions (t*,=,)=(t,o), t E[o,~). 
Recall that the Hamiltonian of system (7.3) is defined by the relationship 

H (f,Z) = ,Iy, ZP t- ,p& (1, (1 -f) f la) Y = 11, 1 - ) 1,(1 -1) + I* ) 

Let s -= (sl, s*) E pm (t, O), t E IO. 1). We will consider two cases: 1) O<S,C 1 -t; z)s,= 0. 

In the first case, we have 

n (t, 0, s) = (a (ap a,) : a, == 2 (2 + (1 - 2) - s*)_1, a, = 
((i - t) -- s,) (2 + (1 - t) - s&l] 

L (t, 0, I, a) : (a ::- (al, aa), b = (b,, b,) : a, = a,, a2 c _oL1, b Y: _+) 

We obtain 

If (1, a) = H (t, b)= 1 a, ) -- 1 aI (1 - t) - CL* 1 = (2 - (i - t) - sa). 

(2 _t (1 - t) - s&1 

If (1. YR i- (1 - y) 0) m= 1 2y - 1 I(2 - (1 - t) -- se) (2 -1 (I - t) - s,)-’ 

o_ry<i, o<s*c.:1 --t 

Since 

yH (t, a) i- (i - y) H (1, b) = JI (t. a) == (2 - (1 - t) - sz) (2 -t (1 - 1) - sJ-1';3 
I 21’ - i 1 (2 - (1 - t) - sJ (2 i- (1 - t) - s&l = H (t. ya + (1 - y) b), 

o<y‘;l 

conditions (6.7) and (6.8) are satisfied. 
In the second case, we have 

A (t, 0, 8) = (x = (x,, x,), h = (h,, li,) : x1 = z (2 + (1 - *))-I, 
x* = (1 - t) (2 + (i - t))-'. 1, = 0, Ir, = 1) 

L (t, 0, s, x) = {a = (a,, a*), b = (b,, b,) : a1 = %, a, = -x3, b = --a) 

L (C, 0, s, h) = (c = (Cl, en) : c, = 0, c, = 0) 

H (f, 4 = H (h b) = I x1 I - I x1 (1 - t) - xI 1 = (2 - (1 - t)) (2 + (1 - t))-1, 
H (t, c) = 0 

H (t* ?'I= + -nb + yac) = I 1’1 - y, I (2 - (1 - t)) (2 + (i - r))-* 

Yk > 0, k = I,‘& 3, ?'I+ V.-t %'a = 1 

Since 

yJ (t. 0) + y&f (6 b) + Y,H (6 4 = (A + vr) ff 0, 4 = 
(VI + y,) (2 - (1 - 0) (2 + (1 - W’> I Yl - Yx I(2 - (1 - N (2 + (i - w= 

H (t,y,. + y,b + YIC), ok > 0, k = 1, 2, 3, A + ~a + YS = 1 

conditions (6.7) and (6.8) are satisfied. 
We can similarly evaluate PM VMF (t,~)-.pm(t,~) in other positions (t.,z,)e [O,l] x R* and 

check the regularity conditions (6.7) and (6.8). 
In this example, the PM VMF (i,z)-pm(t,z) is identical with the OGR VMF (#,z)- ~(t,t). 
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ACCESSORY PARAMETERS IN CIRCULAR QUADRANGLES* 

P. YA. POLUBARINOVA-KOCHINA 

The problem of the conformal mapping of a circular polygon in a 
half-plane (a half-strip, a rectangle, a circle, etc.) is of 
considerable importance, e.g. in the theory of groundwater motion. The 
question of accessory (redundant1 parameters that may arise in this case 
is not trivial and deserves special analysis. Some special cases of 
such problems are considered in this paper. 

1. A circular triangle in a plane is completely defined by the position of its three 
vertices and the three angles at the vertices. For a circular quadrangle, the specification 
of three of its vertices and the four angles does not completely define the quadrangle, and 
the fourth vertex may have an infinite set of positions /l, p.306/. Let us consider this 
problem in more detail for the case of a circular rectangle (Fig.11 with given sides A,A, = a 
andA,A, = b. Draw two families of auxiliary circles tangent to the segments AlA, and 
-434, at the points Al and A,, respectively. An infinite set of these circles intersects 
at a right angle (points A and A’). We will show that the family of such points 4 (3. Y) 
is a circle through the vertices of the rectangle AlA,A,A, (Fig.1). 

Let (0, W and (a,, 0) be the centres of two circles through the point A. Then the 
equations of these circles are 

x2 + (y - b# = (b, - b)*, (x - aI)” + yz = (a1 - a)” 

The expressions for the slope of the tangents at the point A 

y,’ = -x/(y - b,), y,’ = -(x - a,)/y 

(1.1) 


